Interannual variability of individual growth of the great scallop *Pecten maximus*.

Antoine EMMERY

MASTER 2 training research project
Sciences Biologiques Marines

LEMAR
Institut Universitaire Européen de la Mer

Supervisors: Frederic Jean, Jonathan Flye Sainte Marie, Stéphane Pouvreau
Pecten maximus

- mollusc, bivalve, Pectinidae
- benthic suspension feeders
 depth: 5 m ➔ 120 m
- temperate species
 Norway ➔ Maroco
- high economical value
- fishery in Bay of Brest

→ Studied by LEMAR
(Laboratory of Marine Environment Sciences)
The DEB model

- Standard DEB model (in energy)

- States variables:
 - Energy reserves (E)
 - Structure (V)
 - Maturity and reproduction (Er)

- Forcing variables:
 - Food
 - Temperature

Diagram:
- Food
- Temperature
- Faeces
- Pseudo-faeces
- Energy reserves E
 - Kappa
 - 1-Kappa
- Structure V
- Maturity Er
 - Somatique maintenance
 - Maturity maintenance
The model parameters

- Literature

- Calculated from literature

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Units</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>8990</td>
<td>--</td>
<td>This study</td>
</tr>
<tr>
<td>δ</td>
<td>0.36</td>
<td>--</td>
<td>This study</td>
</tr>
<tr>
<td>{Pxm}</td>
<td>576</td>
<td>J cm$^{-2}$ d$^{-1}$</td>
<td>This study</td>
</tr>
<tr>
<td>{Pam}</td>
<td>432</td>
<td>J cm$^{-2}$ d$^{-1}$</td>
<td>This study</td>
</tr>
<tr>
<td>ae</td>
<td>0.75</td>
<td>--</td>
<td>Van der Veer & al. (2006)</td>
</tr>
<tr>
<td>Xk</td>
<td>450</td>
<td>Nb. Cell L$^{-1}$</td>
<td>This study</td>
</tr>
<tr>
<td>[Pm]</td>
<td>24</td>
<td>J cm$^{-3}$ d$^{-1}$</td>
<td>Van der Veer & al. (2006)</td>
</tr>
<tr>
<td>[EG]</td>
<td>1900</td>
<td>J cm$^{-3}$</td>
<td>Van der Veer & al. (2006)</td>
</tr>
<tr>
<td>[EM]</td>
<td>2025</td>
<td>J cm$^{-3}$</td>
<td>This study</td>
</tr>
<tr>
<td>Kappa</td>
<td>0.5</td>
<td>--</td>
<td>This study</td>
</tr>
<tr>
<td>Kr</td>
<td>0.95</td>
<td>--</td>
<td>Kooijman (2000)</td>
</tr>
<tr>
<td>Vp</td>
<td>5.8</td>
<td>cm3</td>
<td>This study</td>
</tr>
<tr>
<td>Lm</td>
<td>25</td>
<td>cm</td>
<td>This study</td>
</tr>
</tbody>
</table>
Study site: Bay of Brest

Roscanvel = fisheries site
Biological data

- Monitoring of a *Pecten maximus* population (Roscanvel):
 - 8 years from 1996 to 2003 (LEMAR)
 - 2.5 to 3.5 years old individuals (age classe 3)
 - 25 individuals twice a month

Variations of the shell length and the total flesh dry weight
Biological data

- Monitoring of a *Pecten maximus* population (Bay of Brest):
 - 8 years from 1996 to 2003 (LEMAR)
 - 2.5 to 3.5 years old individuals (age classe 3)
 - 25 individuals twice a month

Variations of the shell length and the total flesh dry weight
Forcing variables: temperature

- **Temperature of the bottom water at Roscanvel:**
 - Linear interpolation to obtain daily data
 - No data since 2001 => average of the 5 previous years

![Temporal variations of the bottom water](image)
Forcing variables: food

- Phytoplankton data from REPHY survey (Ifremer) at Lanvéoc:
 density of phytoplankton species => Nb. of Cells L⁻¹

Temporal variations of the specific phytoplankton blooms composition

![Graph showing temporal variations of phytoplankton blooms composition]
Environmental data: food

- Phytoplankton data in Lanvéoc from REPHY survey (Ifremer):

density of phytoplankton species => Nb. of Cells L$^{-1}$

Temporal variations of the specific phytoplankton bloom composition

![Graph showing temporal variations of phytoplankton bloom composition](image-url)
Résults : dry weight growth

1999

- **Simulation (g)**
- **Observations (g ; +/- S.D.)**

GROWTH (-)

2002

- **Simulation (g)**
- **Observations (g ; +/- S.D.)**

GROWTH (-)

2003

- **Simulation (g)**
- **Observations (g ; +/- S.D.)**

GROWTH (+)
Résults : dry weight growth

... but :

1997

Time (Julian Days)

Total Flesh Dry Weight (g)

Simulation (g)

Observations (g ; +/- S.D.)

GROWTH (+)
Studies: Chauvaud & al. (1998; 2001) and Lorrain & al. (2000)

Bloom → massive sedimentation → clogging gills → disturbance

filtration = 0 → when [Phytoplankton] > 1.5 \times 10^6 \text{ cell. L}^{-1}
Résults: stop in filtration activity => Dry weight

Better fit

Stop in the dry weight growth

Model able to simulate the impact of bloom massive sedimentations
Résults: stop in filtration activity => Shell

Stop in the length growth (shell) Model able to simulate length growth stop
Conclusions

• Good simulations (1999 to 2003):

 • trophic resource (+) => « high » growth
 • trophic resource (-) => « low » growth

• 2002 & 2003 => deviations

 ➔ contribution of other food sources?

 - microphytobenthos
 - detritic and terrestrial matter
 - size/species selection?
 - how consider « quality » of food sources?
Conclusion

Model behaviour in 1997:

food concentration: (+) (+) (+) => over estimation of the dry weight growth

simple way to model the Chauvaud & al. (1998; 2001) and Lorrain & al. (2000) hypothesis:

=> growth in weight and length OK
=> stop in weight and length growth

• another perspective

=> latitudinal gradient

Maroco ← Bay of Brest → Norway
... thank you!