Estimation of bacterial growth efficiency by a coupled experimental-modelling approach

Influence of substrate regime

M. Eichinger, S.A.L.M. Kooijman, R. Sempéré, D. Lefèvre, G. Grégori, B. Charrière and J.C. Poggiale
marie.eichinger@ifremer.fr

The oceanic carbon cycle
The oceanic carbon cycle

Dissolved organic carbon (DOC)

2nd stock of bioreactive carbon in the oceans (Williams & Druffel 1987)

3 pools (Kirchman et al. 1993):
- Labile DOC (L-DOC)
- Semi-labile DOC (SL-DOC)
- Refractory DOC (R-DOC)

Heterotrophic bacteria

Major DOC consumers (Pomeroy 1974)
DOC producers (Kaiser and Benner 2008)

≈ 50% of total respiration in ocean interior (del Giorgio & Duarte 2002)

Central component of the microbial loop (Legendre & Rassoulzadegan 1995)

BGE = bacterial growth efficiency
quantifies carbon fluxes through bacterioplankton

L-DOC

BGE
growth

(1-BGE)
respiration

CO₂

?

Δbiomass

Δsubstrate

DEB Symposium
Brest 20-22 April 2009
The oceanic carbon cycle

<table>
<thead>
<tr>
<th>Dissolved organic carbon (DOC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd stock of bioreactive carbon in the oceans (Williams & Druffel 1987)</td>
</tr>
<tr>
<td>3 pools (Kirchman et al. 1993):</td>
</tr>
<tr>
<td>• Labile DOC (L-DOC)</td>
</tr>
<tr>
<td>• Semi-labile DOC (SL-DOC)</td>
</tr>
<tr>
<td>• Refractory DOC (R-DOC)</td>
</tr>
</tbody>
</table>

BGE = bacterial growth efficiency

- quantifies carbon fluxes through bacterioplankton

BGE varies greatly according to numerous factors:

- chemical nature (Cherrier et al. 1996)
- molecular weight (Amon and Benner 1996)
- elemental ratios (Goldman et al. 1987)
- distance from seashore (La Ferla et al. 2005)
- season (Romthaler & Herndl 2005)
- temperature (Rivkin & Legendre 2001)
- UV exposure (Abboudi et al. 2007)

Heterotrophic bacteria

- Major DOC consumers (Pomeroy 1974)
- DOC producers (Kaiser and Benner 2008)

≈ 50% of total respiration in ocean interior (del Giorgio & Duarte 2002)

Central component of the microbial loop (Legendre & Rassoulzadegan 1995)

Objectives

Influence of DOC availability on BGE estimation

Consequences for ecosystem modelling

- DOC degradation experiments: one load vs pulsed load
- construction of a DEB model
- comparison with empirical models
- BGE estimation
- impact for biogeochemical modelling

BGE = \(\frac{\Delta \text{biomass}}{\Delta \text{substrate}} \)
Objectives

Influence of DOC availability on BGE estimation
Consequences for ecosystem modelling

• DOC degradation experiments: one load vs pulsed load
 • construction of a DEB model
 • comparison with empirical models
 • BGE estimation
 • impact for biogeochemical modelling

DOC degradation experiments

Experiment B
Batch

Experiment P
Pulsed

Typical experiment
Mimic natural DOC dynamic

unique L-DOC source: Pyruvic acid
unique bacterial strain: Alteromonas infernus

Same experimental conditions
Same total amount of substrate
Nutrients in excess

Effects of substrate regime on DOC and bacterial dynamics?
DOC degradation experiments

Experiment B
Batch
Typical experiment

Experiment P
Pulsed
Mimic natural DOC dynamic

unique L-DOC source: Pyruvic acid
unique bacterial strain: Alteromonas infernus

Same experimental conditions
Same total amount of substrate
Nutrients in excess

Effects of substrate regime on DOC and bacterial dynamics?

DOC = dissolved organic carbon
POC = particulate organic carbon (bacterial biomass)
Objectives

Influence of DOC availability on BGE estimation
Consequences for ecosystem modelling

- DOC degradation experiments: one load vs pulsed load
- construction of a DEB model
- comparison with empirical models
- BGE estimation
- impact for biogeochemical modelling
Construction of a DEB model

Case 1: growth

- 3 state variables
 - $L = L\text{-DOC}$
 - $M_E = \text{reserve mass}$
 - $M_V = \text{structural body mass}$

- 3 processes

![Diagram of DEB model for Case 1: growth]

Case 2: reduction

- 3 state variables
 - $L = L\text{-DOC}$
 - $M_E = \text{reserve mass}$
 - $M_V = \text{structural body mass}$

- 3 processes

![Diagram of DEB model for Case 2: reduction]

Kooijman 2000
Tolla et al. 2007

DEB Symposium
Brest 20-22 April 2009
Construction of a DEB model

Case 1: growth

- 4 state variables
 - \(L \) = L-DOC
 - \(R \) = unlabile-DOC
 - \(M_E \) = reserve mass
 - \(M_V \) = structural body mass

- 4 processes
 - \(M_E \) = assimilation
 - \(M_V \) = maintenance
 - Growth
 - \(POC = M_V + M_E \)
 - \(DOC = L + R \)

Case 2: reduction

- 2 new parameters:
 - \(j_{MV} \) = maintenance from structure
 - \(y_{RV} \) = yield coefficient from structure to unlabile-DOC

Objectives

Influence of DOC availability on BGE estimation
Consequences for ecosystem modelling

- DOC degradation experiments: one load vs pulsed load
- construction of a DEB model
- comparison with empirical models
- BGE estimation
- impact for biogeochemical modelling
Comparison with empirical models

<table>
<thead>
<tr>
<th>Processes</th>
<th>DEB</th>
<th>Marr-Pirt</th>
<th>Monod</th>
</tr>
</thead>
<tbody>
<tr>
<td>reserve</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 maintenances ($M_E + M_V$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-DOC production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-DOC production</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special cases of the DEB model with particular parameter values

Processes

Pulse

- DEB:
 - Reserve
 - 2 maintenances ($M_E + M_V$)
 - R-DOC production

Batch

- DEB:
 - Reserve
 - 2 maintenances ($M_E + M_V$)
 - R-DOC production

- Marr-Pirt:
 - 1 maintenance (M_v)
 - R-DOC production

- Monod:
 - 1 maintenance (M_v)
 - R-DOC production
Objectives

Influence of DOC availability on BGE estimation
Consequences for ecosystem modelling

• DOC degradation experiments: one load vs pulsed load
• construction of a DEB model
• comparison with empirical models
• BGE estimation
• impact for biogeochemical modelling

BGE estimation

\[\frac{dl}{dt} = -\alpha lM_L \]
\[\frac{dM}{dt} = \alpha y_{LM}M_L - j_{gD}M_v - y_{LV}M_v + \frac{k_{LM}M_L - j_{M}M_L}{M_L + y_{LV}M_v} \]
\[d\left(\frac{M_L}{y_{LV} + M_L} \right) = \frac{y_{LM} - j_{gD}}{y_{LV} \alpha L} \]

\[\frac{dM_L}{dt} = \text{BGE}_L \]

\[\frac{dM_v}{dt} = \text{BGE}_v \]

\[\frac{dM_j}{dt} = \text{BGE}_j \]
BGE estimation

DEB
\[
\frac{dL}{dt} = -\alpha L M_v
\]
\[
\frac{dM}{dt} = \alpha y_{L,M_v} L M_v - j_{M_v} M_v
- y_{L,M_v} \frac{k_2 M_v - j_{M_v} M_v}{M_v + y_{L,M_v} M_v}
\]
\[
\frac{dM_v}{dt} = y_{L,M_v} \frac{k_2 M_v - j_{M_v} M_v}{M_v + y_{L,M_v} M_v} - y_{L,m} M_v
\]
\[
\frac{d(M/L)}{-dL} = y_{L,M_v} \frac{j_{M_v}}{y_{L,M_v}} \alpha L
\]

Marr-Pirt
\[
\frac{dL}{dt} = -\alpha L M_v
\]
\[
\frac{dM}{dt} = BGE_s \alpha L M_v - j_{M_v} M_v
\]
\[
\frac{dM_v}{dt} = y_{L,M_v} \frac{j_{M_v}}{M_v}
\]
\[
\frac{d(M/L)}{-dL} = BGE_s \frac{j_{M_v}}{\alpha L}
\]

Monod
\[
\frac{dL}{dt} = -\alpha L M_v
\]
\[
\frac{dM}{dt} = BGE_s \alpha L M_v
\]
\[
\frac{dM_v}{dt} = BGE_s \alpha L M_v
\]
\[
\frac{d(M/L)}{-dL} = BGE_s \frac{j_{M_v}}{\alpha L}
\]
BGE estimation

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Monod</th>
<th>Marr-Pirt</th>
<th>DEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>0.14</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>Pulse</td>
<td>0.23</td>
<td>0.38</td>
<td>0.34</td>
</tr>
</tbody>
</table>

BGE for model including maintenance are higher than without maintenance.

BGE estimated from the Marr-Pirt and DEB models are equivalent.
BGE estimation

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Experimental</th>
<th>Monod</th>
<th>Marr-Pirt</th>
<th>DEB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>0.21</td>
<td>0.20</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>Pulse</td>
<td>0.27</td>
<td>0.23</td>
<td>0.38</td>
<td>0.34</td>
</tr>
</tbody>
</table>

BGE for model including maintenance are higher than without maintenance

BGE estimated from the Marr-Pirt and DEB models are equivalent

BGE estimated experimentally and from the Monod model are equivalent

Bacterial growth on pulse load is more efficient
Objectives

Influence of DOC availability on BGE estimation
Consequences for ecosystem modelling

• DOC degradation experiments: one load vs pulsed load
• construction of a DEB model
• comparison with empirical models
• BGE estimation
• impact for biogeochemical modelling

Impact for biogeochemical modelling

• Bacterial DOC production
 new DEB bacterial model
 only 2 more parameters
Impact for biogeochemical modelling

• BGE (pulse) > BGE (batch)

- Bacterial DOC production
 - should be taken into account in biogeochemical models (Eichinger et al., accepted)
 - impact on the carbon cycle?

• BGE (pulse) > BGE (batch)
 - incorporation of a better DOC dynamic → higher BGE

• BGE (maintenance) > BGE (without maintenance)
 - maintenance was experimentally demonstrated
 - under-estimation of the BGE with the typical methods?
 - over-estimation of bacteria as CO₂ producer?
Thank you for your attention !!!