DONNEES ADCP DU N/O
POURQUOI PAS ?

Année 2013

ADCP de coque OS-38 kHz et OS-150 kHz
SOMMAIRE

1 INTRODUCTION GENERALE ... 4

2 RECAPITULATIF SUR LA QUALITE DES DONNEES 4

2.1 Configuration des ADCP ... 5

2.2 Traitements effectués .. 5

2.3 Qualité des données reçues .. 6

2.4 Image des sections ... 7

3 LE TRANSIT TR_LHACOR (OS 150KHZ - SEPTEMBRE) 8

3.1 Bathymétrie GEBCO dans la zone ... 8

3.2 Qualité des données reçues .. 9

3.2.1 CORR_ECI ... 9

3.2.2 CAP/ROULIS/TANGAGE ... 9

3.3 Composantes parallèle et orthogonale .. 10

3.4 Nettoyage des données .. 10

3.5 Exploitation des données – Tracés .. 11

3.5.1 La marée ... 11

3.5.2 Définition des sections .. 11

3.5.3 Images des sections ... 11

3.5.4 Tracés des vecteurs des sections ... 12

4 LE TRANSIT EOP5 (OS 150KHZ – SEPTEMBRE – OCTOBRE) ... 13

4.1 Bathymétrie GEBCO dans la zone .. 13

4.2 Qualité des données reçues .. 14

4.2.1 CORR_ECI ... 14

4.2.2 CAP/ROULIS/TANGAGE ... 14

4.3 Composantes parallèle et orthogonale .. 15

4.4 Nettoyage des données .. 16

4.5 Exploitation des données – Tracés .. 16

4.5.1 La marée ... 16

4.5.2 Définition des sections .. 16

4.5.3 Images des sections ... 17

4.5.4 Tracés des vecteurs des sections ... 18

5 LE TRANSIT TV_INFO (OS 150KHZ – NOVEMBRE) 19

5.1 Bathymétrie GEBCO dans la zone .. 19

5.2 Qualité des données reçues .. 20

5.2.1 CORR_ECI ... 20

5.2.2 CAP/ROULIS/TANGAGE ... 20
5.3 Composantes parallèle et orthogonale ... 21
5.4 Nettoyage des données .. 22
5.5 Exploitation des données – Tracés ... 22
 5.5.1 La marée .. 22
 5.5.2 Définition des sections ... 22
 5.5.3 Images des sections ... 23
 5.5.4 Tracés des vecteurs des sections .. 24

6 LE TRANSIT ODEMAR (OS 150KHZ – NOVEMBRE – DECEMBRE) ... 25

 6.1 Bathymétrie GEBCO dans la zone .. 25
 6.2 Qualité des données reçues ... 26
 6.2.1 CORR_ECI .. 26
 6.2.2 CAP/ROULIS/TANGAGE ... 26
 6.3 Composantes parallèle et orthogonale .. 27
 6.4 Nettoyage des données .. 27
 6.5 Exploitation des données – Tracés .. 28
 6.5.1 La marée .. 28
 6.5.2 Définition des sections ... 28
 6.5.3 Images des sections ... 28
 6.5.4 Tracés des vecteurs des sections .. 29

7 REFERENCES .. 30
1 Introduction générale

Ce document présente le traitement des données ADCP de coque, du navire Océanographique Pourquoi pas? pour les campagnes qui se sont déroulées en 2013.

Récapitulatif des campagnes POURQUOI PAS? 2013 dont les ADCP de coque ont été traitées :

<table>
<thead>
<tr>
<th>Nom campagne</th>
<th>Type ADCP</th>
<th>Période</th>
<th>Zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR_LHACOR</td>
<td>150</td>
<td>07/09/2013 - 12/09/2013</td>
<td>Horta – A Coruna</td>
</tr>
<tr>
<td>TVEOP5</td>
<td>150</td>
<td>20/09/2013 - 04/10/2013</td>
<td>Lisbonne - Toulon</td>
</tr>
<tr>
<td>TV_INFO</td>
<td>150</td>
<td>05/11/2013 - 14/11/2013</td>
<td>Toulon - Praia</td>
</tr>
<tr>
<td>ODEMAR</td>
<td>150</td>
<td>15/11/2013 - 20/12/2013</td>
<td>Mindelo – Pointe à Pitre</td>
</tr>
</tbody>
</table>

2 Récapitulatif sur la qualité des données

<table>
<thead>
<tr>
<th>Nom campagne</th>
<th>Type ADCP</th>
<th>Période</th>
<th>Zone</th>
<th>Bonnes (%)</th>
<th>Absentes (%)</th>
<th>Sous fond (%)</th>
<th>Portée max (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR_LHACOR</td>
<td>OS150</td>
<td>Février</td>
<td>Horta – A Coruna</td>
<td>55</td>
<td>0</td>
<td>7</td>
<td>350</td>
</tr>
<tr>
<td>TVEOP5</td>
<td>OS150</td>
<td>Septembre – Octobre</td>
<td>Lisbonne – Toulon</td>
<td>66</td>
<td>3</td>
<td>3</td>
<td>350</td>
</tr>
<tr>
<td>TV_INFO</td>
<td>OS150</td>
<td>Novembre</td>
<td>Toulon – Praia</td>
<td>72</td>
<td>8</td>
<td>4</td>
<td>350</td>
</tr>
<tr>
<td>ODEMAR</td>
<td>OS150</td>
<td>Novembre – Décembre</td>
<td>Mindelo – Pointe à Pitre</td>
<td>52</td>
<td>21</td>
<td>1</td>
<td>350</td>
</tr>
</tbody>
</table>

Tableau 1– Récapitulatif qualité des données ADCP Pourquoi pas?

2.1 Configuration des ADCP

La configuration de l’ADCP OS 38 est donnée dans le tableau 1 et celle de l’ADCP OS 150 dans le tableau 2.

Angle des faisceaux par rapport à la verticale	30°
Fréquence	38 kHz
Système	OS (Ocean Surveyor)
Gamme de vitesse	High
Orientation	down
Configuration des faisceaux	beam
Angle de l’ADCP avec l’axe du navire	45.11 degrés
Longueur des cellules	24 mètres (grands fonds)
	16 mètres (côtier)
Nombre de cellules par ping	75 (grands fonds)
	80 (côtier)
Ping par ensemble	1

Tableau 2 – Configuration de l’ADCP OS 38 KHz

Angle des faisceaux par rapport à la verticale	30°
Fréquence	150 kHz
Système	OS (Ocean Surveyor)
Gamme de vitesse	High
Orientation	down
Configuration des faisceaux	beam
Angle de l’ADCP avec l’axe du navire	45.58 degrés
Longueur des cellules	8 mètres (grands fonds)
	4 mètres (côtier)
Nombre de cellules par ping	45 (grands fonds)
	65 (côtier)
Ping par ensemble	1

Tableau 3 – Configuration de l’ADCP OS 150 KHz

2.2 Traitements effectués

Les traitements ont été réalisés avec le logiciel CASCADE_EXPLOIT et se décomposent en cinq étapes principales :

1. Création d’un fichier campagne unique au format NetCDF à la norme OceanSite.
2. Nettoyage du fichier = les données mesurées sont affectées d’un indicateur qualité dont les valeurs sont présentées dans le tableau 3.
3. Ajout de la marée
4. Application d’un filtre linéaire
5. Création de sections et/ou de stations et génération des images et des tracés de vecteurs pour les sections et/ou les stations définies.
Sur les appareils de type OS, qui équipent en particulier le BB et le PP, on ne comprend pas très bien (pour le moment) le signal contenu dans la variable W (à cause du principe du phase array). Il ne sert donc à rien d'essayer d'obtenir un W moyen proche de 0.
Les valeurs indiquées dans les tableaux de résultats de ce rapport sont donc les valeurs obtenues sans correction de l'assiette.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Signification</th>
<th>Variable associée</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Données bonnes</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | Données douteuses (données relatives aux cellules dont l'une des composantes horizontales (U et V) diffère trop des 5 voisins horizontaux et verticaux ou points isolés) Lorsque plus de 50% de la couche de référence est flaguée incorrecte (à 2 ou plus) tout le profil sous le premier point douteux est flagué à 2 | Vdiff
fact_sis
cis_max_u |
| 3 | Données mauvaises Filtre médian sur 5 (N_fl3) ensembles au-delà de 2.8 (X_fl3) écarts-types. | N_fl3
X_fl3 |
| 4 | Cellules dont l'une des composantes horizontales a un cisaillement vertical différentiel > 0.05 (X) cm/s. L'histogramme des cisaillements tracé en début de nettoyage permet de déterminer la valeur X. | cis_max |
| 5 | Cellules dont la vitesse verticale du courant et/ou erms > 30 (X) cm/s ou erreur | w_max |
| 6 | Cellules dont l'une des vitesses absolues horizontales (U ou V) > 4 (X) m/s | v_max |
| 7 | Données absentes | |
| 8 | Données sous le fond en fonction du Bottom Ping (ADCP) ou de la Bathymétrie | |
| 9 | Données invalidées entre 2 dates ou entre 2 ensembles par l'utilisateur | |
| 10 | Données sous le fond en fonction de la détection amplitude, intensité écho | |

Tableau 4 – Valeurs des flags qualité (les valeurs noires en gras peuvent être modifiées par l’utilisateur)

2.3 Qualité des données reçues
Un premier aperçu de la qualité des données est fourni par l’indicateur de corrélation entre le signal émis et le signal reçu. Plus ces 2 signaux sont corrélés (>150), meilleure est la mesure.
L’intensité de l’écho rétro diffusé est une caractéristique de la qualité de la diffusion.
Les graphes de CORR et ECI seront présentés pour chaque campagne.

Un fichier de bathymétrie (GEBCO) est associé à chaque campagne. Ceci permet d’enlever les points que la bathymétrie a considéré comme étant sous le fond. Dans les graphes représentant la qualité des données (CORR et ECI), on peut apercevoir la bathymétrie sous forme de trait noir sous lequel les données ne seront pas prises en compte.
2.4 *Image des sections*

Les données ont été filtrées préalablement aux tracés, seules les données affectées de flags 1 et 2 sont utilisées (les flags 2 sont issus du filtrage, ils sont affectés aux données interpolées ou extrapolées).

Pour chacune de ces 3 sections, 2 graphes sont présentés :

- **U** = composante Est-Ouest du courant (>0, vers l'Est)
- **V** = Composante Nord-Sud du courant (>0 vers le Nord)
3 Le transit TR_LHACOR (OS 150KHz - Septembre)

Le transit TR_LHACOR s’est déroulé du 7 au 12 septembre 2013 dans l’océan Atlantique Nord. Le départ a eu lieu à Abidjan et l’arrivée à La Seyne Sur Mer.

Le trajet du navire est le suivant :

![Figure 1 - Route du navire durant la campagne](image)

3.1 Bathymétrie GEBCO dans la zone

![Figure 2 – Bathymétrie GEBCO sur le trajet de la campagne](image)
3.2 Qualité des données reçues

3.2.1 CORR_ECI

Figure 3 – Indicateur de corréléation (graphe haut) et intensité de l’écho rétro-diffusé (graphe bas) pour tous les flags qualité

3.2.2 CAP/ROULIS/TANGAGE

Roll : roulis / Ptch : tangage / Hdg : cap
3.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

<table>
<thead>
<tr>
<th></th>
<th>Corrélation Min</th>
<th>Corrélation Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composante parallèle</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Composante orthogonale</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Tableau 5– Composantes parallèle et orthogonale

3.4 Nettoyage des données

Flag 1: Données bonnes : 77103 54.53%
Flag 2: Données douteuses : 1231 0.87%
Flag 3: Filtre médian sur 25 ensembles au-delà de 2.70 écarts-types : 1957 1.38%
Flag 4: Pour cisaillement > 0.590 s-1 : 0 0.00%
Flag 5: Pour erreur > 0.200 m/s et pgood > 10% : 21568 15.25%
Flag 6: u,v > 2 m/s : 29992 21.21%
Flag 7: Données absentes : 0 0.00%
Flag 8: Données sous le fond : 9554 6.76%
Flag 9: Données invalidées entre 2 dates : 0 0.00%

Ce qui correspond au graphique suivant :

Figure 4– Valeurs des flags attribués par les contrôles automatiques
3.5 Exploitation des données – Tracés

3.5.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant.

3.5.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

<table>
<thead>
<tr>
<th>N°</th>
<th>Date début</th>
<th>Date fin</th>
<th>Localisation</th>
</tr>
</thead>
</table>

Tableau 6– Date et localisation des sections de la campagne

La carte est la suivante :

Figure 5– Carte de la section définie sur le trajet de la campagne

3.5.3 Images des sections

Figure 6 – Composantes du courant – Section 1 de la campagne de 0 à 1200 m
3.5.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms.

Le facteur d’échelle est de 0.25 et un point sur 2 a été tracé.

Figure 7- Vecteurs du courant sur la tranche 50 à 200 m

Figure 8- Vecteurs du courant sur la tranche 200 à 300 m
4 Le transit TVEOP5 (OS 150KHz – Septembre - Octobre)

Le transit TVEOP5 s’est déroulé du 20 septembre au 4 octobre 2013 dans l’océan Atlantique Nord. Le départ a eu lieu à Lisbonne et l’arrivée à Toulon.

Le trajet du navire est le suivant :

![Route du navire durant la campagne](image1)

4.1 Bathymétrie GEBCO dans la zone

![Bathymétrie GEBCO sur le trajet de la campagne](image2)
4.2 Qualité des données reçues

4.2.1 CORR_ECI

Figure 11 – Indicateur de corrélation (graphe haut) et intensité de l’écho rétro-diffusé (graphe bas) pour tous les flags qualité

4.2.2 CAP/ROULIS/TANGAGE

Roll : roulis
Pch : tangage
Hdg : cap
4.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

<table>
<thead>
<tr>
<th></th>
<th>Corrélation Min</th>
<th>Corrélation Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composante parallèle</td>
<td>0.694</td>
<td>0.878</td>
</tr>
<tr>
<td>Composante orthogonale</td>
<td>-0.373</td>
<td>0.118</td>
</tr>
</tbody>
</table>

Tableau 7– Composantes parallèle et orthogonale
4.4 Nettoyage des données

Flag 1: Données bonnes : 123314 66.14%
Flag 2: Données douteuses : 1107 0.59%
Flag 3: Filtre médian sur 25 ensembles au-delà de 2.70 écarts-types : 3579 1.92%
Flag 4: Pour cisaillement > 0.620 s-1 : 0 0.00%
Flag 5: Pour erreur > 0.150 m/s et pgood > 10% : 34501 18.50%
Flag 6: u,v > 2 m/s : 13194 7.08%
Flag 7: Données absentes : 5011 2.69%
Flag 8: Données sous le fond : 5744 3.08%
Flag 9: Données invalidées entre 2 dates : 0 0.00%

Ce qui correspond au graphique suivant :

Figure 12– Valeurs des flags attribués par les contrôles automatiques

4.5 Exploitation des données – Tracés

4.5.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant.

4.5.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

<table>
<thead>
<tr>
<th>N°</th>
<th>Date début</th>
<th>Date fin</th>
<th>Localisation</th>
</tr>
</thead>
</table>

Tableau 8– Date et localisation des sections de la campagne

Décembre 2014
La carte est la suivante :

Figure 13– Carte de la section définie sur le trajet de la campagne

4.5.3 Images des sections

Figure 14 – Composantes du courant – Section 1 de la campagne de 0 à 1200 m
4.5.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms.

Le facteur d’échelle est de 0.25 et un point sur 2 a été tracé.

Figure 15- Vecteurs du courant sur la tranche 50 à 200 m

Figure 16- Vecteurs du courant sur la tranche 200 à 300 m
5 Le transit TV_INFO (OS 150KHz – Novembre)

Le transit TV_INFO s’est déroulé du 5 au 14 novembre 2013 dans l’océan Atlantique Nord. Le départ a eu lieu à Toulon et l’arrivée à Praia (Cape Verde).

Le trajet du navire est le suivant :

![Figure 17 - Route du navire durant la campagne](image17.png)

5.1 Bathymétrie GEBCO dans la zone

![Figure 18– Bathymétrie GEBCO sur le trajet de la campagne](image18.png)
5.2 Qualité des données reçues

5.2.1 CORR_ECI

![Diagramme illustrant le graphique de corrélation et l'intensité de l'écho rétro-diffusé pour tous les flags qualité.]

Figure 19 – Indicateur de corrélation (graphe haut) et intensité de l’écho rétro-diffusé (graphe bas) pour tous les flags qualité

5.2.2 CAP/ROULIS/TANGAGE

Roll : roulis
Ptch : tangage
Hdg : cap
5.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

<table>
<thead>
<tr>
<th>Composante</th>
<th>Corrélation Min</th>
<th>Corrélation Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composante parallèle</td>
<td>-0.855</td>
<td>-0.414</td>
</tr>
<tr>
<td>Composante orthogonale</td>
<td>-0.280</td>
<td>0.499</td>
</tr>
</tbody>
</table>

Tableau 9– Composantes parallèle et orthogonale
5.4 **Nettoyage des données**

Flag 1: Données bonnes : 201724 71.76%
Flag 2: Données douteuses : 1427 0.51%
Flag 3: Filtre médian sur 25 ensembles au-delà de 2.70 écarts-types : 2391 0.85%
Flag 4: Pour cisaillement > 0.660 s-1 : 0 0.00%
Flag 5: Pour erreur > 0.150 m/s et pgood > 10% : 41282 14.69%
Flag 6: u,v > 2 m/s : 1146 0.41%
Flag 7: Données absentes : 22446 7.98%
Flag 8: Données sous le fond : 10689 3.80%
Flag 9: Données invalidées entre 2 dates : 0 0.00%

Ce qui correspond au graphique suivant :

![Figure 20– Valeurs des flags attribués par les contrôles automatiques](image)

5.5 **Exploitation des données – Tracés**

5.5.1 **La marée**

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant.

5.5.2 **Définition des sections**

Au cours de cette campagne, 1 section a été définie :

<table>
<thead>
<tr>
<th>N°</th>
<th>Date début</th>
<th>Date fin</th>
<th>Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>06/11/2013</td>
<td>17:32:30</td>
<td>14/11/2013 20:29:29</td>
</tr>
</tbody>
</table>

Tableau 10– Date et localisation des sections de la campagne
La carte est la suivante :

Figure 21 – Carte de la section définie sur le trajet de la campagne

5.5.3 Images des sections

Figure 22 – Composantes du courant – Section 1 de la campagne de 0 à 1200 m
5.5.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms.

Le facteur d’échelle est de 0.15 et un point sur 3 a été tracé.

Figure 23- Vecteurs du courant sur la tranche 50 à 200 m

Figure 24- Vecteurs du courant sur la tranche 200 à 300 m
6 Le transit ODEMAR (OS 150KHz – Novembre - Décembre)

Le transit ODEMAR s’est déroulé du 15 novembre au 20 décembre 2013 dans l’océan Atlantique Nord. Le départ a eu lieu à Mindelo (Cape Verde) et l’arrivée à Pointe à Pitre.

Le trajet du navire est le suivant :

Figure 25 - Route du navire durant la campagne

6.1 Bathymétrie GEBCO dans la zone

Figure 26– Bathymétrie GEBCO sur le trajet de la campagne
6.2 Qualité des données reçues

6.2.1 CORR_ECI

Figure 27 – Indicateur de corrélation (graphe haut) et intensité de l’écho rétro-diffusé (graphe bas) pour tous les flags qualité

6.2.2 CAP/ROULIS/TANGAGE

Roll : roulis / Ptch : tangage / Hdg : cap
6.3 Composantes parallèle et orthogonale

Les informations sur les composantes parallèle et orthogonale à la vitesse du navire sont :

<table>
<thead>
<tr>
<th>Composante</th>
<th>Corrélation Min</th>
<th>Corrélation Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composante parallèle</td>
<td>0.045</td>
<td>0.727</td>
</tr>
<tr>
<td>Composante orthogonale</td>
<td>-0.216</td>
<td>0.577</td>
</tr>
</tbody>
</table>

Tableau 11– Composantes parallèle et orthogonale

6.4 Nettoyage des données

Flag 1: Données bonnes : 189193 51.86%
Flag 2: Données douteuses : 16225 4.45%
Flag 3: Filtre médian sur 25 ensembles au-delà de 2.70 écarts-types : 22411 6.14%
Flag 4: Pour cisaillement > 0.520 s-1 : 1 0.00%
Flag 5: Pour erreur > 0.150 m/s et pgood > 10% : 53644 14.70%
Flag 6: u,v > 2 m/s : 3071 0.84%
Flag 7: Données absentes : 77279 21.18%
Flag 8: Données sous le fond : 2991 0.82%
Flag 9: Données invalidées entre 2 dates : 0 0.00%

Ce qui correspond au graphique suivant :

![Graphique des flags attribués par les contrôles automatiques](image)
6.5 Exploitation des données – Tracés

6.5.1 La marée

Les composantes de la marée ont été prises en compte lors du calcul des vitesses du courant.

6.5.2 Définition des sections

Au cours de cette campagne, 1 section a été définie :

<table>
<thead>
<tr>
<th>N°</th>
<th>Date début</th>
<th>Date fin</th>
<th>Localisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15/11/2013</td>
<td>11:14:12</td>
<td>19/12/2013 14:47:26</td>
</tr>
</tbody>
</table>

Tableau 12– Date et localisation des sections de la campagne

La carte est la suivante :

![Figure 29– Carte de la section définie sur le trajet de la campagne](image)

6.5.3 Images des sections

![Figure 30 – Composantes du courant – Section 1 de la campagne de 0 à 1200 m](image)
6.5.4 Tracés des vecteurs des sections

Les tracés de vecteurs sont réalisés avec une distance entre chaque point égale à 5 kms.

Le facteur d’échelle est de 0.15 et un point sur 4 a été tracé.

Figure 31- Vecteurs du courant sur la tranche 50 à 200 m

Figure 32- Vecteurs du courant sur la tranche 200 à 300 m
7 Références

