.. _doc.basic.formulations: Numerical formulations ======================= **Metrics** ------------ Limits of the grid : * **imin** =0 (always) : index of the first column * **jmin** =0 (always) : index of the first row * **imax** : index of the last column * **jmax** : index of the last row * **kmax** : number of layers * **k=1 bottom layer** * **k=kmax surface layer** * **Bathymetric variables** * **h0** (imin:imax,jmin:jmax) * **hx** (imin:imax,jmin:jmax) * **hy** (imin:imax,jmin:jmax) .. image:: FIG/PHYS/schema_H.jpg * **State variables** * **ssh** (imin:imax,jmin:jmax) : sea surface height * **u** (imin:imax,jmin:jmax) : barotropic zonal velocity (from row calculation at t+dt/2) * **uz** (kmax,imin:imax,jmin:jmax) : 3D zonal velocity (from row calculation at t+dt/2) * **v** : barotropic zonal velocity (from column calculation at t+dt/2) * **vz** (kmax,imin:imax,jmin:jmax) : 3D meridional velocity (from column calculation at t+dt/2) * **sal** (kmax,imin:imax,jmin:jmax) : salinity * **temp** (kmax,imin:imax,jmin:jmax) : temperature * **cv_wat** (nb_var,kmax,imin:imax,jmin:jmax) : substance .. _doc.vertmixing: **Turbulence models** : nz,kz for **Vertical Mixing** ------------------------------------------------------- :math:`\frac{1}{D}\frac{\partial(\frac{nz}{D}\frac{\partial u}{\partial \sigma })}{\partial \sigma }` * **0 equations : turb_nbeq=0** * cst : nz , kz constant ! **turb_0eq_option = 1** * Prandt model : viscosite=f(u*) constant mixing length ! **turb_0eq_option = 2** * :math:`nz=u^*\frac{H}{15}*\sigma\sqrt{1-\sigma}` * :math:`u^*=\frac{0.4}{\log{\frac{(\sigma+1) H}{z_0}}} u_{bottom}` * Quetin model : based on density stratification : no constant mixing length ! **turb_0eq_option = 3** * :math:`nz=l^2\frac{\partial u}{\partial z}` * :math:`kz=f(Ri)l^2\frac{\partial u}{\partial z}` * l analytical * Pacanovski et Philander, 1981 : ! **turb_0eq_option = 4** * :math:`nz=\frac{\nu_0}{(1+\alpha Ri)^n}+\nu_b` * :math:`kz=\frac{\nu}{(1+\alpha Ri)}+k_b` * :math:`Ri=\frac{\frac{\partial b}{\partial z}}{|\frac{\partial U}{\partial z}|^2}` * **1 equation : turb_nbeq=1** * Gaspard et al, 1990 : * :math:`nz,kz=f(ect,l)` * ect computed and l evaluated * **2 equations : turb_nbeq=2** * Warner et al. 2005 * :math:`nz,kz=f(k,kl,l)` * k,kl computed and l evaluated * 4 turbulence closure models * k-kl : **turb_2eq_option = 1** * Close to Mellor–Yamada level 2.5 scheme of Mellor et Yamada (1974, 1982) * k–ε : **turb_2eq_option = 2** * Jones and Launder (1972), Launder and Sharma (1974) * Burchard et al. (1998), Burchard and Bolding (2001) * k-ω : **turb_2eq_option = 3** * Kolmogorov (1942), Saffman (1970), Saffman and Wilcox (1974), Umlauf et al. (2003) * GLS : generic length scale ! **turb_2eq_option = 4** * Umlauf and Burchard (2003) Parametrization of the **bathymetry** ------------------------------------- * **hminim** marks off the coastline beacuse it is the minimum value of the bathymetri (hx,hy) * hminim= -max ('|'hnivmoy'|') along the coastline * In microtidal area, if the reference for the bathymetry is the level of lowest astronomical tides, the shift *hnivmoy* is applied to the inital bathymetric value. Then, the tidal signal evolves around the mean sea level. All along the coast, *hminim* is equal to *hnivmoy* and marks the coast line. * The parameter **xemoy** may be used when the model vertical reference of the bathymetry derives from a preexisting level network (IGN 69, NGF..), that differs from the hydrographic zero (level of lowest astronomical tides) .. image:: FIG/PHYS/schema_bathy1.jpg Note on wetting and drying ^^^^^^^^^^^^^^^^^^^^^^^^^^ * **h0fond** is a residual thickness used to ensure *h0+xe* keeps positive. * As the continuity scheme is not positive definite, it might be possible to export more water mass than available in the cell during the drying .. image:: FIG/PHYS/schema_bathywetdry.jpg .. image:: FIG/PHYS/schema_bathywetdry2.jpg Parametrization of the run period ---------------------------------- .. image:: FIG/PHYS/schema_runtime.jpg