Extinctions and threat in the sea

Nicholas K. Dulvy
Centre for Environment, Fisheries and Aquaculture Science, Lowestoft laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT, UK
Phone: 44-1502-562244
E-mail: n.k.dulvy@cefas.co.uk

Key words: exploitation, extinction risk, habitat loss, marine, threat

SUMMARY

There have been few species extinctions in the sea (18-21) compared to on land (829). Given the relatively high degree of human impact on the oceans this could be interpreted to suggest the effect of human impacts on marine biodiversity has been low. Alternatively it could be that it is more difficult to detect extinctions of non-air breathing marine organisms. Current evidence suggests population and species extinctions have occurred in the last 100 years and that a large number are threatened, primarily by exploitation and habitat loss or degradation. Evidence for poor detection of marine extinctions is consistent with the hypothesis that the number of marine extinctions is underestimated. Reducing fishing effort would reduce extinction risk in the sea.

SPECIES EXTINCTIONS

Human impacts on the oceans are widespread and substantial and concern has been growing of the possibility that marine species are being driven to extinction (Roberts & Hawkins 1999; Hutchings & Reynolds 2004). Current evidence suggests few marine organisms have become globally extinct in the past 300 years, compared to on land where 829 species have disappeared (Baillie et al. 2004). There is unequivocal evidence for the extinction of 12 marine species, comprising three mammals, five seabirds and four gastropods (Carlton et al. 1999). An additional 3 bird and mammal species are listed as extinct by the World Conservation Union (IUCN) Red List (Baillie et al. 2004). A recent survey of marine extinctions has uncovered evidence to suggest the global extinction in the wild of a further six species comprising two fishes, two corals and two algae (Dulvy et al. 2003). These species, the Galapagos damselfish (Azurina eupalama), the Mauritius green wrasse (Anampses viridis), and two corals (Millepora boschmai, Siderastrea glynni), Turkish towel algae (Gigartina australis) and Bennett’s seaweed (Vanvoortsia bennettiana) have are also thought to be extinct throughout their small geographic ranges.

There are a number of problems with determining the number of marine species extinctions; in particular is the uncertainty of taxonomic status and also in defining when the last individual has gone (Carlton et al. 1999). A number of taxa could be added to the list of global extinctions. However, it is not clear whether these are full valid species, clinal variants, hybrids or aberrant specimens (Carlton et al. 1999). In many cases there is little museum reference material to work with, so it is unlikely that this problem can be resolved. In summary, excluding these uncertain records, there is good evidence that between 18-21 species have become globally extinct in the last three hundred years.

POPULATION EXTINCTIONS
There are three reasons for considering population-scale extinctions. First, populations hold unique genetic material and are often behaviourally and morphologically distinct (Carlton et al. 1999). Second, in metapopulation dynamic theory, source populations may also rescue other sink populations and thus have the capacity to contribute to the resilience of the species as a whole (Smedbol & Stephenson 2001). The corollary to this is that the extinction of populations is the first step toward species extinctions (Pitcher 1998; Hutchings & Reynolds 2004). Finally, conservation interventions and management action typically occur at the population or stock scale in the marine environment. If the definition of extinction is relaxed to consider local and regional disappearances then the list of population-level extinctions is much longer.

A recent compilation estimated that a total of 133 marine species have undergone a local, regional or global extinction (Dulvy et al. 2003). The authors highlighted that this dataset was far from definitive, because of the problems of recognising and defining extinction. However since this dataset was compiled no evidence has come to light, that suggests that any of the species or populations originally highlighted, have recovered or reappeared. Instead there is evidence for additional population-level extinctions, particularly on coral reefs, including; the disappearance of the rainbow parrotfish (Scarus guacamaia), from the coastline of Brazil (Ferreira et al. 2005), population extinctions in the world’s largest parrotfish, the giant bumphead parrotfish (Bolbometopon muricatum) (Bellwood et al. 2003; Dulvy & Polunin 2004), and the local and near-global extinction of two coral-dwelling gobies (Gobiidae) (Munday 2004).

CAUSES OF EXTINCTIONS

In Dulvy et al. (2003) local, regional, and global extinctions were categorised according to causal factor. There are difficulties in categorising causal factors, particularly as it is often difficult to rule out possible causes retrospectively. Despite these problems the authors tried to be conservative in their categorisations. Most of the extinctions (over all spatial scales) could be attributed to a single primary causal factor (80%). Exploitation, either through hunting or fishing, was the primary factor for 55% of reported cases and habitat loss/degradation resulted in 37% of reported extinctions (Dulvy et al. 2003). Other threats were relatively minor; 2% of extinctions could be attributed to the effects of invasive species and 6% were attributed to other factors such as climate change, pollution and disease (Dulvy et al. 2003).

A recent survey of the degree of threat in North American marine fishes finds that 82 marine fish species and subspecies threatened with extinction, according to the American Fisheries Society threat criteria (Musick 1999; Musick et al. 2000). At least 22 of these species are endemic to North America and could also be considered vulnerable to global extinction. The main causes of threat in North American marine fishes were exploitation 55% (45 species and subspecies) and habitat degradation 39% (25 species or subspecies) (Musick et al. 2000). An additional 7 species and subspecies were threatened by a combination of exploitation and habitat degradation. The remaining species were threatened by invasive species and pollution (Musick et al. 2000).

WHAT IS THE RATE OF MARINE EXTINCTIONS?

There are three problems with assessing the rate of marine extinctions. First, the number of marine species is difficult to know; current estimates suggest approximately 15% of recorded species are found in the sea (May 1994). The total number of species on Earth vary widely but the consensus is that there are somewhere between 1.75-13.6 million species (May 1988, 1994; Hawksworth & Kalin-Arroyo 1995). Many species are unknown, inaccurately
described and our knowledge is biased toward certain taxa and habitats (Hammond 1992). Second, a comprehensive assessment of threat and extinction risk has yet to be undertaken for marine species. The World Conservation Union has conducted threat assessments of only 814 marine species to date (Baillie et al. 2004). The threat status of one third (373 species) of chondrichthyan fishes (sharks rays and chimaeras) has been assessed to date. Seventeen percent of chondrichthyans were listed as Threatened, 19% are Near-threatened, 26% as Least Concern and 38% were Data Deficient (Cavanagh & Dulvy 2004). This rate of threat is likely to decrease as the remaining species are included; often the first species assessed are the best known or most threatened (Darwall 2004). Third, detecting the extinction of non-air-breathing marine animals is extremely challenging (Roberts & Hawkins 1999). Here I outline two lines of evidence why this might be so.

(1) Eighty percent of the local, regional and global extinctions were detected using retrospective, indirect survey methods, such as questionnaire of fishers traditional knowledge and species catch lists (e.g., Sadovy & Cheung 2003; Dulvy & Polunin 2004), or comparisons of present day faunal lists with previous inventories (Smith-Vaniz et al. 1999; Wolff 2000a; Wolff 2000b). Relatively few extinctions (20%) were described using direct methods such as regular field surveys, e.g. barndoor skate (Dulvy et al. 2003; Dulvy et al. 2004).

(2) Poor detection is indicated by the 53-year lag between the last sighting of an individual and the reported extinction. By comparison the lag between last sighting and reported extinction is no more than four years in birds (Baillie et al. 2004). If our detection of marine extinctions were perfect then no lag is expected between the death of the last individual and first reports of the demise of the species (Dulvy et al. 2003).

Species and population extinctions have occurred in the sea but it is difficult to estimate their number and rate, though we can be reasonably certain that marine extinctions are underestimated. The lack of detailed knowledge on marine extinctions should not hinder mitigating action. Scientific advice has consistently highlighted the overcapacity of fishing fleets. Reducing fishing effort in line with the ecosystem approach to fisheries management will not only improve fishery stability and profitability (Sinclair & Valdimarsson 2003), but will also have the benefit of lowering extinction risk, particularly for large-bodied species.

ACKNOWLEDGEMENTS

I thank Yvonne Sadovy and John Reynolds for their ongoing collaboration, and Simon Jennings and Nicholas Polunin for their continued support. This work was supported by funding from the Natural Environment Research Council, UK and Department of Environment, Food and Rural Affairs, UK (grant MF0729).

REFERENCES


Pitcher T.J. (1998) A cover story: fisheries may drive stocks to extinction. Reviews in Fish Biology and Fisheries, 8, 367-370


