Multidecadal oscillations of the meridional overturning circulation in presence of bottom topography...

Thierry Huck <thuck@univ-brest.fr>, Alain Colin de Verdière, Dhouha Ferjani

Laboratoire de Physique des Océans (UMR 6523 CNRS IFREMER UBO), Université de Bretagne Occidentale, Brest, France

Poster ID: B2132 - Session 084 Advances in Flow-Topography Interactions - Presentation Day: Wednesday 4-6pm

Outline

We revisit here the influence of bottom topography on intrinsic decadal-scale variability of the ocean thermohaline circulation. Using various models based on different vertical coordinates (isopycnal, sigma, and z) and sub-grid scale parameterizations. Idealized geometry (rectangular flat-bottom basin) ocean models forced by prescribed basin-wide fluxes show generic transitions towards multidecadal oscillations when the overturning circulation is large enough or the eddy-diffusivity reduced (above some critical Peclet number U L / KH). These oscillations were rationalized through a large-scale baroclinic instability, the decadal period being related to the propagation of long baroclinic Rossby waves across the basin along the model equivalent of the North Atlantic drift front. A few studies have pointed out a potential damping influence of bottom topography on these oscillations. The goal is to improve through models of westward propagating Rossby waves with bottom topography, such as a M6-Atlantic Ridge.

Here we first set up different models with different vertical coordinates to assess the generic property of these oscillations. Decadal variability appears ubiquitous, although specific models setup rate questions on what is a realistic oceanic parameter regime at low-resolution O(1)°. Then we introduce various idealized bottom topography (bowl, ridge) with increasing amplitude to assess their influence on the oscillations. In contrast with our initial hypothesis, there is no systematic damping influence of large bottom topographic structures like mid-basin ridge.

Finally these results sound in agreement with the analysis of ocean basin modes in a 2-layer shallow water model including bottom topography (Ferjani et al. 2012, submitted). A detailed energy budget of the decadal modes damping though eddy viscosity and diffusivity, and bottom interaction show the former largely predominates.

Experiments with the sigma-coordinates model ROMS

We use here the Regional Ocean Modeling System (Shchepetkin and McWilliams 2005), based on topography-following sigma coordinates. The model configuration spans 5120 km in longitude and 4468 km in latitude on a Cartesian beta-plane centered at 40°N, 3800 m deep. We use around 1° horizontal resolution grid (59x94) and 20 sigma levels. Temperature only is used, and surface heat flux are prescribed as a linear function of latitude varying from 30°C at the equator to -50°C at the pole. There is no wind forcing. The initial temperature is uniformly 4°C. The model is integrated for at least 1000 yr. The reference simulation uses 10^{10} (10^10) m3/s vertical mixing for tracer (momentum); 700 (5 10^7) m3/s horizontal mixing for tracer (momentum); and no-slip boundary conditions.

As for simulations previously described in planetary-geostrophic and, primitive-equtions (MOM) models, the integrations leads to multidecadal variability (periods in the 20-50 yr range). Introducing bowl-shape bottom topography with amplitudes ranging from 10 to 400m, we observe absolutely no clear damping influence on the oscillations (Figure 1). Standard deviation of kinetic and potential energy do not show any trend with the amplitude of the tracer (momentum); and no-slip boundary conditions.

For parameters/parameterizations turned out to be highly inadequate for our idealized setting. Using only temperature (constant salinity), isopycnals are isotherms, hence isopycnal mixing has absolutely no effect. We had to rely on much higher values for layer thickness horizontal mixing to mimic our horizontal eddy diffusivity. In the absence of wind forcing, the use of KPP vertical mixing was not a good choice, and the large values of diapycnal mixing required to drive a realistic overturning in a single hemisphere basin were imposed through the background diapycnal mixing.

We have first tested the influence of the various parameters to retrieve our previous sensitivity analysis of the oscillations (Huck et al. 1999). The overturning circulation strongly depends on the background diapycnal mixing and requires values of 10^{-10} m2/s to reach reasonable values of 13 Sv. The horizontal thickness diffusion has a damping role for very large values corresponding to 700-1000 m$^{-1}$. m$^{-2}$. Then we introduce a bowl shape geometry up to the surface. The variability is not significantly modified, standard deviation of total kinetic energy even increasing by 30%, but not changing for SST (0.10m).

We finally move on to mid-basin ridge geometry of the same shape as for ROMS, and amplitude varying from 100 to 400m.

These simulations have shown quite surprising step limitations depending on resolution and bottom topography amplitude that we are not able to rationalize for now. In general time step is to 1 hour, but it decreases to 10 min. for some cases, and others could simply not run! Note that if eddy viscosity and diffusivity are let to the model implicit numerical schemes (as achieved by some ROMS/RBird people), the regular oscillations are replaced by higher frequency noisy variability. Much higher resolution simulations are currently required to properly address this issue.

We now introduce a mid-basin ridge that we expect to distort Rossby waves westward propagation. It has a Gaussian shape as a function of longitude, with a width of 20% of the basin extent, and amplitude varying between 200 and 2000m. Bottom depth is adjusted such that the basin volume remains constant. Once again, the effect is clearly not as strong as expected, and no trend is found. There is clearly some efficient damping for small ridge (200-400m) but the variability gets back to the flat-bottom level for larger amplitude (800-1600m), before decreasing strongly for 2000m. More experiments are required to clarify these results (resonance, influence of the mean state, ...).

Finally these results are not as large as for ROMS experiments, such that the full behavior found at very large amplitude is not yet found here. But clearly, the damping role of bottom topography is not as regular as expected. Results are remarkably similar to the experiment with ROMS.

Conclusion

Our result with ROMS and HYCOM contrast with our expectations when we initiated this work, based on a few 'old' experiments with bottom topography using a coarse resolution MCM model (Winton 1997; Huck et al. 2001). At this point we do not know if it is a model bias, for example the large bottom steps enhancing bottom topography influence on decadal variability, or just some bad luck in the old settings. Clearly, bottom topography may not have as much a damping role on the decadal variability as we thought, and this is in agreement with recent work on basin modes energy balance (Ferjani et al. 2012 submitted). We still believe this genuine intrinsic multidecadal variability of the ocean thermohaline circulation may have a role in the observed North Atlantic climate variability, on decadal to millennial periods. Work will be pursued to compare more thoroughly the results from the different model types as has been done for steady-state (Park and Bryan 2000, 2001) and more realistic configurations (Dynamo project).

Acknowledgments.

Thanks to the ROMS-AORIF and HYCOM communities that make freely available their models and documentations, to Patrice Bellec (LPO) for running most of the experiments and analyses, and to Olivier Arzel for the last-minute poster framework. This work is part of the project T. Amono funded through the French CNRS/INSU/LEPE program.

References

Figure 1: Total kinetic energy as a function of time in ROMS for the flat-bottom basin case, the case with no horizontal mixing (amplitude is divided by 20 here), and bowl-shape bottom-topography with amplitude of 100, 200 and 400m.

Figure 2: Total kinetic energy mean and standard deviation as a function of the mid-basin ridge amplitude in ROMS (KE mean is divided by 20).

Figure 3: Total kinetic energy mean and standard deviation as a function of the mid-basin ridge amplitude in HYCOM experiments (KE mean is divided by 10).

Unfortunately, the range of ridge amplitude tested is not yet as large as for ROMS experiments, such that the full behavior found at very large amplitude is not yet found here. But clearly, the damping role of bottom topography is not as regular as expected. Results are remarkably similar to the experiment with ROMS.