INTRODUCTION

Centennial scale variability is ubiquitous in historical records of temperature and proxy records in sediments and ice cores. As the slow component of the Earth’s climate system, the ocean circulation is a potential candidate for generating oscillations on such long time scales. We develop this idea through the analysis of the stability of the ocean circulation in a hierarchy of simplified ocean models (one- and two-dimensional), using linear stability analysis and density variance budgets in order to better understand the oscillation mechanism.

LATITUDE-DEPTH MODEL

\[\partial_t T = -J(\psi, T) + K_u \nabla^2 T + K_v \nabla T + C, \]

Temperature evolution

\[\partial_t S = -J(\psi, S) + K_i \nabla^2 S + K_s \nabla S + C, \]

Salinity evolution

\[J = -\rho_0 \partial_t P, \]

Linear friction term (Wright and Stocker, 1991)

\[\rho_0 \partial_x P = -\rho, \]

Hydrostatic equation

\[\rho_0 \partial_w = 0, \]

Continuity equation

\[\int_d Pdz = 0, \]

Baroclinicity condition

\[K_i \partial_x T(y) = \partial_x \left(\frac{\rho}{\rho_0} T(y) - T(y) \right), \]

Temperature boundary condition

\[K_i \partial_x S(y) = \partial_x \left(\frac{\rho}{\rho_0} S(y) - S(y) \right), \]

Salinity boundary condition

Our control parameter for the direct integration experiments is the freshwater flux intensity (F0). We explored the range 70-100 cm yr\(^{-1}\). After a Hopf bifurcation (around 79 cm yr\(^{-1}\) without convection and 92 cm yr\(^{-1}\) with convection) the direct integration of our model reveals centennial variability; this variability persists with and without convection (in the following presentation we deal with the case without convection).

The 1D model reproduces fairly well the 2D model oscillation in terms of period, propagation and surface intensification.

\[\partial_t T + \omega \partial_z T = \tau_T \left(T G_T(\phi) - T \right) \]

\[\partial_t S + \omega \partial_z S = \frac{F_G}{\rho_0} \left(S G_T(\phi) \right) \]

\[\omega = -\frac{\sigma^2}{\rho_0} \left(-\nabla T + \beta S \right) \sin(\phi) \partial\phi \]

The 1D model reproduces fairly well the 2D model oscillation in terms of period, propagation and surface intensification.

CONCLUSION

A direct integration of a latitude-depth model produces a centennial oscillation. Linear stability analysis clearly represents the anomaly and its propagation.

\[\text{Temperature, salinity and overturning averaged over the period, time series of the maximum of the overturning streamfunction. There is perpetual oscillation for the case without convection at } F_0 = 80 \text{ cm yr}^{-1}. \]

Temperature and salinity anomalies are well correlated. However the density is dominated by the salinity. It is mainly advected by the mean flow; the period is 171 yr with a growing time scale of 206 yr.

The linear stability analysis reveals that the most unstable eigenvector has the same properties. The eigenvalue corresponds to a 160 yr period and a 206 yr growing time scale.

We can compare the impact of temperature and salinity variability on the density variance evolution (Azezi et al., 2004).

This density variance budget corresponds to the symmetric part of the evolution equations yielding to growth or damping.

This budget focuses on the restoring surface term, and specifically on the coupled, for the density, temperature-salinity part, which balances the diffusion term.

After a modal decomposition (around the loop) we can analytically evaluate the period and the growth/damping of the oscillation with the eigenvalue \(\lambda = \lambda_0 + i \lambda_1 \) of linear stability analysis.

We found analytically that \(\lambda_0 > 0 \) for our parameters. The salt anomaly can be enhanced by its induced circulation. This mechanism is consistent with the variance budget. Indeed, the restoring surface temperature increases the density anomaly as it decreases the temperature anomaly. The overturning circulation is amplified accordingly and the salinity anomaly is enhanced.

The period can be analytically determined: \(\tau_0 \approx \omega \). We can also estimate a criterion of oscillation (Sévellec et al., 2004):

- \(\tau_{FP} \) corresponding to the freshwater forcing time scale,
- \(\tau_{O} \) is the overturning time scale,

If \(\tau_{FP} \leq \tau_{O} \) there is centennial oscillation.

If \(\tau_{FP} > \tau_{O} \) there is the positive salinity feedback.

\[\text{Schematic representation of the different mechanisms between the salinity oscillation regime (Mark arrow) and the positive salinity feedback (red arrow).} \]

\[\text{References:} \]

\[\text{Temperature, salinity and overturning averaged over the period, time series of the maximum of the overturning streamfunction. There is perpetual oscillation for the case without convection at } F_0 = 80 \text{ cm yr}^{-1}. \]

\[\text{Temperature, salinity and overturning averaged over the period, time series of the maximum of the overturning streamfunction. There is perpetual oscillation for the case without convection at } F_0 = 80 \text{ cm yr}^{-1}. \]